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Dependence of the pattern of variation of gas parameters on the deviation ofthe 

oncoming stream velocity from sonic is established as the result of investigation 

of flow at great distances from bodies of revolution. This dependence makes it 
possible to determine the law of drag variation at transonic speeds, which is con- 

firmed by calculations presented here. 
The weak effect of the oncoming stream velocity on the deviation of parame- 

ters at the body upstream of the compression shock from their values at sonic 

speed at infinity is a property of transonic flows, known as the law of stabiliza- 

tion. It was discovered experimentally and expounded in [1] for plane flows. 
The relation of the stabilization law to the pattern of the stream at great distan- 
ces upstream of a compression shock was established in [2. 31. In the first of 

these the assumption is made that the drag is weakly dependent also on the velo- 

city at infinity, which is not supported by experimental data. The latter reveal 

a rapid motion of the compression shock toward the body trailing edge, when 

the velocity of the oncoming stream approaches the speed of sound. For constant 

parameters upstream of the shock the drag is affected not only by the motion of 
the shock itself, but also by parameters downstream of it. For the determination 
of the dependence of the drag of a body on the oncoming stream velocity, it is, 

consequently, necessary to investigate the flow downstream of the shock. 

1. Let us briefly state the properties of sonic flows at great distances from a body of 
revolution. which will be required subsequently. They were investigated in [4 - 111 and 
provide a fairly complete picture of the flow as a whole. In particular, they clarify the 
nature of incipient formation of drag of a body at sonic velocity. 

Since investigations [4 - 111 imply that at great distances from a body the compres- 
sion shock intensity is low, hence there exists a velocity potential which can be repre- 
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sented by an infinite asymptotic series. Below we shall need only three of its terms 
which are of the form 3 

@ = a,r f 2 ?,-2k"(@i), 4 -= zy-‘qX + 1)--'/J (1.1) 

k=l 

where a, is the critical speed of sound, x is the exponent of the Poisson adiabate, and 

z and I/ are axes of a cylindrical coordinate system. Functions ‘ph (E) are determined 
with an accuracy to within the constant coefficients, with w (5) nonzero only down - 

stream of the compression shock. In conformity with (1.1) the shock front is defined by 
the equality 

2 = (x + i)1’$/7& (1 + cay-Y + c.&-“~) (1.9) 

in which Es, Q and ca are constants. 

let us consider a closed reference surface surrounding the body and consisting of a 

cylinder Y = R and two planes x = f (x + i)‘la &.R'iT (R 3 1). The rate of gas flow 
through it is calculated by the asymptotic expansion (1.1) and is equal A + 0 (R-*/y), 
where A is proportional to cs l-91. Since the closed body cannot be a source of mass, 
formula (1.1) is inapplicable on some of the regions of the flow field at great distances 

(from the body). Below we denote by I the region where (1.1) is valid. To avoid phy- 

sical inconsistency of the flow pattern, it is necessary to consider also the region of the 

vortex trail (region II) lying along the s’-axis downstream of the body. The principal 

term of the expansion of solution for that region with .Z -. 00 represents a shear flow 

vy -= 0, vy = fl,u ($), s = s, + & x+i 
ln[T(i -s G)j (1.3) 

completely determined by the entropy change S ($) - S, of particles which takes place 

at intersection with the compression shock, and is considered specified. Subsequent terms 
of the expansion of solution in the trail which depend on z were derived in [lo] in +‘y - 

coordinates and not in Mises coordinates Z, 9 which are more suitable for our purpose. 

The deficiency of flow through the trail region produced by the entropy distribution in 
it compensates the excess of flow through the external region and results in the drag de- 
fined by formula 00 t 

Fr = 2?cp*n*~ 
I 

u-1(1 - u¶)(i - p?"2)-xI(w 
n-l 

dY, P=x+l (1.4) 

0 

where p* is rhe critical density. 

2. let us pass to the investigation of flows which at very great distances from the 
body differ only slightly from flows at sonic velocity and introduce a certain small pa- 
rameter E to characterize such difference. At great distances from a body of revolution 
outside the trail (region 1) we represent the flow velocity potential in the form 

@ = a*z + cp (5, Y) + ax CG Y) (2. I) 

where rp (z, y) denotes the potential of the sonic stream perturbation, as defined by 
(1. l), and x (z,y) denotes its perturbation related to the change of boundary conditions 
at infinity. We seek the principal term of expansion of x (z,y) of the form 

X = y-2nt,‘l Xm (E), m < 1 (2.2) 
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We assume that the constant m which defines X (Z, y) is known. Let us consider 

the principal term of the complete perturbation of potential 

y-‘/7 ‘pi (0 + ay-am’7 Xm (8 (2.3) 

and assume that the difference of boundary conditions at infinity from sonic are related 

only to the divergence of the oncoming stream velocity M, from unity. Then the same 

form (2.3) remains valid for various M,, with only parameter E dependent on M, . 
To determine the character of that dependence we carry out the transonic similarity 
transformation 

x--f 5 I xg, y-f y( 1 -.M,~1~‘/50 

stipulating the conservation of E. The ratio of terms of the sum (2.3) then yields the 

required dependence a = (1 _ M,) -(*i)is (2.4) 

The condition m < 1 appears in (2.2) which defines the principal term of the expan- 

sion of potential x (0, I/). It implies the existence of distances at which the second term 

in (2.3) becomes comparable to the first, and where expansion in terms of the small pa- 

rameter e is no longer valid. The order of magnitude of such distances, which is deter- 
mined by the comparison of terms in (2.3) at constant E, yields estimates 

y = 0 [ 1 1 - M, I-‘,‘*], 1 5 1 = 0 [(I - M,)-*/a~ 

for the external boundaries of the region of applicability of all expansions derived below. 

These estimates show that in the considered region flow parameters do not greatly dif- 
fer from their corresponding values in a sonic stream, hence, for example, for M, < i 

the end of a local supersonic zone and the place of the compression shock onset do not 
belong to that region. 

3. Thus, the determination of m is the principal task of the problem. To achieve 
it we write the equation which must be satisfied by function em (g) itself [Z, 121 

The limit characteristic E = const along which dql / dE = “ia E” is a singular line 

for this equation. The highest value of m for which xrn is analytic upstream of the com- 

pression shock and satisfies the symmetry condition at passing over the z-axis for 5 < 0 

was found in [2, 121 to be four. 

In accordance with the above the difference between the flow parameters at M, # 1 

and those at sonic velocity is proportional to (1 - M,) Ya, and this provides the theoreti- 

cal basis for the experimentally established stabilization of parameters ahead of the com- 
pression shock in the flow past a body in the transonic velocity range [2, 31. The other 

experimental result which shows the rapid motion of the shock toward the body trailing 
edge with increasing M, can only be explained by the existence in the region down- 
stream of the shock of solutions of Eq. (3.1) for m > -4. 

At the shock front whose shape in accordance with (1.2), (2.1) and (2.2) is defined by 
equation (3.2) 

5 = (x + l)‘r&y’lT (1 + c2y-‘/’ + csy-‘/’ + . . . . + aD,y2fl+i’) 

the condition of continuity of the potential and the equation of the shock polar must be 
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satisfied. For E = Es the transformation of these in conformity with (2.3) yields for 
Eq. (3.1) the Cauchy data. 

Solution of the obtained Cauchy problem for Eq. (3.1) satisfies for g > Es the con- 

dition of absence of sources along the z -axis only for m = 2 [9, lo]. Since m = 2 is 

outside the considered range of variation -4 < n < i, the perturbed fIow for E > Es 

is defined by the two linearly independent solutions of Eq. (3.1). The analysis of 
their behavior for g -+ 00 yields the estimate 

Xm (8 * Earn” (A,, I + Am, 21n E) (3.3) 

where A,,, and A,,% are constants proportional to D,. 
For the subsequent analysis it is necessary to calculate the increments v,’ and yy’ in- 

duced in velocity components by the potential ~2mf7~m (8). In the neighborh~ of 
the x-axis we obtain in accordance with formula (3.3) the estimates 

V,’ = 0 (x-i-m/21n E;), uy’ --+ B,~-~lsy-l, B, = - 4/,Am, 2 (x + l)m,‘6 (3.4) 

Formulas (3.4) show that a perturbation of sonic conditions at infinity results in infinitely 

high transverse velocities near the x -axis. This is because expansion (2.1) does not hold 
in the region whose cross section is of the order of E (regionIII)adjacent to the s-axis, 

This phenomenon does not occur when &f, = 1. 

4, Before eliminating the singularity for y -+ 0, let us consider the flow in the re- 
gion of the vortex trail (region 11) in which, as shown in Sect. 2, the velocity potential 

is absent. We take the coordinates x and Y as the independent variables, and the in- 

crements u,’ and u$ of velocity, S’ of entropy, and $ of the stream function as the 
unknown functions. All of these are proportional to the small parameter a. The flow 
in region If is defined by the Crocco equations of continuity, that of adiabacity, and by 

the equations for 9’ linearized with respect to solution (1.3). These together with the 

three boundary conditions for ‘r -+ 00, derived with the use of the principle of asympto- 

tic joining with the solution in region 1 for considerable x 1133 

$9’ = v; = 0, yvEI’ = B,x--mi2 (4. I) 

completely define the stream in the considered region. 
In accordance with (4.1) we seek the solution of these equations of the form 

l&I = sr-m/2fm (Y), u; = x-mt2gm (Y) (4.2) 

As’ = s?%, (Y), 9’ = &7%r~ (Y) 

The resulting system of linear equations is readily integrated 

f,,, = -& B, (1 - p2uz)1’(w-1)u -& , g, = J&,~~-’ (4.3) 

It follows from solution (4.3) that the boundary conditions (4.1) are in fact satisfied. 
hence for \y -+ 06 the derivatives du / dY -+ 0 and dS 1 dY -+ 0 [ 101. Further- 
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more the additional flow 4’ = 2 (m - 2)-1B,zr-m~s for Y --+ oo and for Y = 0 
is nonzero. The last conclusion clearly shows that the vertical velocity uy = w,, tends 
to infinity as y-r when approaching the s-axis. This result makes it necessary to intro- 
duce the subregion of the vortex trail (region III) which lies in the immediate vici- 

nity of the r-axis. Its transverse dimension, as well as the transverse velocity of parti- 
cles are of the order of &‘h, while the horizontal velocity V, = 0 (1). The principal 

term of the expansion of parameters of the stream in that region in terms of E yields a 

uniform flow at 
US = a,u (01, Uy = 0 (4.4) 

The stream fiction in region 111 varies from \I’ (z, 0) to zero. This shows that the 

total deficiency of flow through the two regions ZZ and III is equal 2ne9’ (c, 00). 
Computation by solution (4.2) - (4.4) of the excess of total value of the z-component 
of the momentum flux carried through the plane c = const which intersects regions ZZ 

and Ilf shows it to be zero, although for parts of that plane which intersect each ofthese 
regions it is nonzero and proportional to ~~-~,‘a. 

6. The derived asymptotic picture of fIow satisfies the conditions at both the com- 
pression shock and the axis of ~rnrnet~ y = 0. It remains to determine the value of 
m for which it is valid. 

For this let us consider the following terms of expansion of the additional potential 
defined by 

‘x = 2 ~-2(m+k)'7~m+k (8 (5.1) 

Each function &+h satisfies the linear differential equation whose left-hand part isthe 

same as in (3. l), if in the latter m -/- bis substituted for m and the right-hand part is 

the sum 

In accordance with (2.1) and (5.1) the shock is specified by the equality 

Along the line 8 -_ &rfunctions xm.+k (E) conform to the Cauchy conditions which are 

not adduced here owing to the~w~eldi~ess of obtained formujas, It should be noted, how- 
ever, that the Cauchy problem for each function Xmik depends on the arbitrary para- 
meter Dm+k appearing in (5.2) which defines the compression shock front. In region 1 
solution (5.1) generates related expansions in regions 11 and III, whose every term is 
defined by formulas (4.2) and (4.3) when m -/- k: is substituted in these for m. A par- 

ticular case occurs for )7~ $- k = 2, This case is considered in detail below. 

Let us determine the entropy gained by particles at the intersection with the compres- 
sion shock using for this the solution for region I, It is defined by 

8 = bry”s” + ~bey-2~mt8X7 + . . ., (b, and b, are constants) 

In this formula the term proportional to e is independent of x’. Hence for joining the 
entropies in region 1 and 1.1 the expansion in region II must also contain a term which 
is independent of 2. It follows from (4.2) that this is only possible for m + k- = 2, 
Since k is a positive integer, n can have only negative values 0, - 1, - 2,. , , , 
of which the highest is zero. 
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The derived value m = 0 solves the formulated here problem of determination of 

the principal term of the additional potential x (5, y) downstream of the compression 

shock for M, # 1 .The difference between stream parameters in this region from those 
obtaining for M, = 1 is in accordance with (2.4) proportional to (1 - M,)‘:s. 

6, The irregular dependence on m is the consequence of the unsuitability of formu- 

las (4.3) for the calculation of fm+ir, n,.+k and (J,+~ for m i- k = 2 , which is rela- 

ted to the change of the kind of dependence of longitudinal velocity, entropy, and stream 
function perturbations on 5 Formulas (4.2) show that for m + ?c -- 2 the sought func- 
tions are independent of X It is then necessary to consider instead of (4.2) a more com- 

plex form of solution which is the sum of two terms, the first of which is independent of 

.z and the second is proportional to In X. Existence of the second term makes it possible 

to obtain a solution with g, (Y?) + 0. If, however, in the stream g, (Y) - 0, the sought 
solution contains the first term only which is independent of 5. 

The system of equations for second terms is homogeneous. For \r -+ 00 its solution 

must satisfy conditions (4.1) and, if in these Bs = 0, the solution of the system is tri- 

vial. If m = 0 , the quantity R, can be determined, since then the equation for us 
. . 

has the first integral 

where E is a constant which for E = Es is determined by Cauchy relationship, It 

vanishes for any arbitrary Ds, f), and LI, , which implies Bz .= 0. 
The term of expansions of stream parameters in region 11 which depend on Xs can be 

determined, if the additional entropy change atss (Y) generated at the passing of par- 
ticles through the distorted compression shock at great distances from a body of revolu- 

tion is known. These terms are 

Y 
1 

112 = -g- s * +uP2,2 (1 _ y2u2)-~I(wg2~y 

0 

Function a2 (Y) tends to zero as Y-S when Y + oo , hence JIL (co) is bounded. 
Depending on its value, parameter D, in formula (5.2) is specified so as to satisfy the 

equality (Z?t)-IQ)’ = Y, (X + l)“l ;:ir f& = 11% (oo) 

which defines the continuity of flow at the passage from region .l to II. 
The considered flow has an additional momentum flux which increases the drag(l.4) 

by eFx’. Its magnitude is completely determined by the change of entropy in the com- 
pression shock Q) 

F’,’ = 43@p,a,s 
s 

c2u-l (1 - l_t2~2)-X’(x-r)&Ll! (6.1) 
0 

7. In some cases of flow past bodies of revolution the integral (6.1) may be zero. 
Let us assume that 6s (Y) = 0. Then in (2.1) m = - 1, E = (1 - hfm)*’ and 
F; = ae + de h E. Constants a and d may be of different order. This particular situ- 
ation has occurred in the course of computation of flows past two bodies of revolution 
with a smooth tail section. The computation was carried out by the difference relaxation 
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Fig. 1 

Fig. 2 Fig. 3 

method similar to that expounded in [14] but applied to bodies of revolution. 
Distribution of local Mach numbers h4 along one of these bodies of revolution for se- 

veral velocities of the oncoming stream is shown in Fig. 1. The meridian cross section 

of the body had the form of a Chaplygin profile. It is seen that the position of the com- 
pression shock changes much quicker than the increase of velocitiesat points of the body 
ahead of the shock. The analysis of their variation in [3] yielded a linear dependence 

on (1 - M,)"/8, which is a numerical confirmation of the stabilization law. 

The drag of a body of revolution can be computed by the distribution of parameters 
along it by the simple integration of the pressure coefficient. The change of the shock 
position along the body or in its immediate vicinity obviously provides the basic contri- 
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bution to the variation of the integral. Coordinates I = zdh of the compression shock 
for the two considered bodies of revolution at distance y = 0.1 from these are shown 

in Fig. 2 for various M, . These coordinates were determined by computing points of 

the maximum velocity gradient. The analysis of these coordinates by formula 

19 1% (i) - Ssh @‘f,)l = g -t n lg (1 - kf,) 
shows that in both cases n = 0.66 zz a/s. Curves of the drag coefficient plotted in Fig. 3 

which are in complete agreement with the obtained value of n , show the linear depen- 

dence [of the drag coefficient1 on (i - M,)%. This is in good agreement with the re- 
sults of the above analysis of the asymptotic properties of axisymmetric transonic flows 
at M,#%. 

The authors thank 0, S. Ryzhov for discussing this paper. 
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